
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

UPC-CHECK: A scalable tool for detecting run-
time errors in Unified Parallel C
Indranil Roy
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Roy, Indranil, "UPC-CHECK: A scalable tool for detecting run-time errors in Unified Parallel C" (2012). Graduate Theses and
Dissertations. 12449.
https://lib.dr.iastate.edu/etd/12449

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12449?utm_source=lib.dr.iastate.edu%2Fetd%2F12449&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

UPC-CHECK: A scalable tool for detecting run-time errors in Unified Parallel C

by

Indranil Roy

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Glenn R. Luecke, Major Professor

Suraj C. Kothari
Zhao Zhang

Iowa State University

Ames, Iowa

2012

Copyright c© Indranil Roy, 2012. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my parents and to my loving sister. Without their

support I would not have been able to complete this work.

I would also like to thank my friends, especially my roommate for their love, care and

support during the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . vii

CHAPTER 1. GENERAL INTRODUCTION 1

1.1 Introduction . 1

1.2 Thesis Organization . 2

CHAPTER 2. UPC-CHECK: A SCALABLE TOOL FOR DETECTING

RUN-TIME ERRORS IN UNIFIED PARALLEL C 3

2.1 Abstract . 3

2.2 Introduction . 4

2.3 Overview of UPC-CHECK . 5

2.3.1 Instrumentation . 6

2.3.2 Errors detected by UPC-CHECK . 7

2.4 Testing . 11

2.4.1 Function testing . 11

2.4.2 Scalability and overhead testing . 12

2.5 Compiler-independence testing . 14

2.6 Fixing errors using UPC-CHECK: An example 14

2.7 Summary . 16

CHAPTER 3. A DISTRIBUTED, SCALABLE AND OPTIMAL DEAD-

LOCK DETECTION ALGORITHM FOR UNIFIED PARALLEL C . . 17

www.manaraa.com

iv

3.1 Abstract . 17

3.2 Introduction . 18

3.3 Background . 19

3.4 Methodology . 21

3.4.1 Detecting deadlocks due to collective errors in collective operations . . . 22

3.4.2 Detecting deadlocks and livelocks created by hold-and-wait dependency

chains for acquiring locks . 34

3.4.3 The complete algorithm . 37

3.5 Experimental verification of scalability . 42

3.6 Conclusion . 43

CHAPTER 4. GENERAL CONCLUSIONS 45

APPENDIX A. USER’S GUIDE FOR UPC-CHECK 1.0 47

A.1 Background . 47

A.2 How to use UPC-CHECK . 47

A.3 Environmental Variables: . 48

A.4 Installation Guide for UPC-CHECK 1.0 . 49

A.5 Tutorial: . 50

ACKNOWLEDGEMENTS . 63

BIBLIOGRAPHY . 64

www.manaraa.com

v

LIST OF TABLES

Table 2.1 Error detection and reporting scores: UPC-CHECK compared to other

systems . 12

Table 2.2 Percentage slow-down of various UPC NAS parallel benchmark on 128

threads. 13

Table 3.1 Time in seconds of the UPC NPB-CG benchmark with and without

deadlock checking . 44

Table 3.2 Time in seconds of the UPC NPB-IS benchmark with and without

deadlock checking . 44

www.manaraa.com

vi

LIST OF FIGURES

Figure 2.1 Compiling files with UPC-CHECK . 6

Figure 2.2 Circular dependencies of threads leading to a deadlock. 9

Figure 2.3 Chain of dependencies leading to a thread that is either waiting at a

collective operation or has completed execution. 9

Figure 3.1 Creating consensus: threads checking state in a circular ring fashion. . 23

Figure 3.2 Checking state: Thread i reaches collective operation before thread j.

(a) no error case. (b) error case. 24

Figure 3.3 Checking state: Thread i reaches collective operation after thread j.

(a) no error case. (b) error case. 25

Figure 3.4 Circular dependencies of threads leading to a deadlock. 34

Figure 3.5 Chain of hold-and wait dependencies while trying to acquire a lock

leading to a deadlock. 35

Figure 3.6 Possible scenarios while detecting deadlocks involving chain of hold-

and wait dependencies. Scenario (a) or (b) is not a deadlock condition,

while scenario (c) or (d) is. 36

www.manaraa.com

vii

ABSTRACT

Unified Parallel C (UPC) is a language used to write parallel programs for shared and

distributed memory parallel computers. UPC-CHECK is a scalable tool developed to auto-

matically detect argument errors in UPC functions and deadlocks in UPC programs at run-time

and issue high quality error messages to help programmers quickly fix those errors. The tool

is easy to use and involves merely replacing the compiler command with upc-check. The tool

uses a novel distributed algorithm for detecting argument and deadlock errors in collective

operations. The run-time complexity of the algorithm has been proven to be O(1). The

algorithm has been extended to detect deadlocks created involving locks with a run-time com-

plexity of O(T), where T is the number of threads waiting to acquire a lock. Error messages

issued by UPC-CHECK were evaluated using the UPC RTED test suite for argument errors

in UPC functions and deadlocks. Results of these tests show that the error messages issued

by UPC-CHECK for these tests are excellent. The scalability of all the algorithms used was

demonstrated using performance-evaluation test programs and the UPC NAS Parallel Bench-

marks.

Keywords: UPC, run-time error detection, dynamic distributed deadlock detection, dis-

tributed shared memory, partitioned global address space.

www.manaraa.com

1

CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Unified Parallel C (UPC) [17, 6] is an extension of the C programming language for parallel

execution on shared and distributed memory parallel machines. UPC is based on the Parti-

tioned Global Address Space (PGAS) [54] programming model. The PGAS model provides the

user the ease of programmability of a shared memory programming paradigm while providing

fine-grain control over data layout and operations of the message passing paradigm.

However, extensive studies show that the error detection capability of compilers and run-

time environments for the UPC language is poor [25, 30]. In the absence of such error detection

capabilities in the system software, a programmer needs to debug the program by manually

computing the program. This can be tedious and challenging for high performance programs

which can be lengthy, complex and written by a team of people over an extended period of

time.

To overcome this limitation, UPC-CHECK was envisioned as a run-time error detection tool

which can be used to automatically detect argument errors in UPC functions and deadlocks in

UPC programs. UPC-CHECK is highly scalable and incurs very low memory and execution-

time overhead. The tool can detect all the argument errors listed in UPC RTED test suite [13].

For deadlock detection, it employs an algorithm [43] whose run-time complexity is proven to be

O(1) for detecting all deadlocks involving any UPC collective operations. In case of deadlocks

involving acquiring of locks, the algorithm has been extended to maintain a distributed and

shared Wait-For-Graph (WFG) and detect deadlocks using the AND model. In this case, the

complexity is O(T), where T is the number of threads in the WFG.

On detecting an error, UPC-CHECK issues a high quality error message. The message

www.manaraa.com

2

pin points the kind of error, line number and the name of the file where the error occurred

and information which might be helpful to the programmer to fix the error quickly. The error

detection capability of the tool and the quality of error messages issued were graded using

the UPC-RTED [30] tool. The results show a marked improvement in the error detection and

reporting capability over existing run-time systems like Cray, Berkeley, HP and GNU.

1.2 Thesis Organization

The thesis consists of two papers. Chapter 2 contains the first paper which describes the

UPC-CHECK tool. The paper first outlines various error detection tools for programs written

in various parallel programming environments like MPI, OpenMP and UPC. It continues to

provide the overview of the tool and the kind of errors which can be detected using the tool.

Finally the results of function, scalability and overhead testing have been presented.

The new deadlock detection algorithm used in the UPC-CHECK tool has been explained

in the paper reproduced in Chapter 3. The paper provides an elaborate literature review of the

deadlock detection methods for distributed systems, multicore operating systems, databases

and high performance computing. The algorithm is first presented and then its correctness

and run-time complexity are rigorously proven. Various performance evaluation tests and real-

time program like the UPC NAS Parallel Benchmark [7] are then used to demonstrate the low

overhead and scalability of the algorithm.

Finally, a summary is presented in Section 4. The summary describes the ease of use of the

tool which merely involves replacing the compiler command with the ‘upc-check’ command.

A user’s guide for using the tool along with some tutorial examples have been presented in

Appendix A. The authors hope that this tool will provide a more productive environment for

programmers to quickly develop and debug programs using UPC.

www.manaraa.com

3

CHAPTER 2. UPC-CHECK: A SCALABLE TOOL FOR DETECTING

RUN-TIME ERRORS IN UNIFIED PARALLEL C

Modified from a paper accepted in International Supercomputing Conference (ICS) 20127

James Coyle16, Indranil Roy1236, Marina Kraeva16, and Glenn R. Luecke456

2.1 Abstract

Unified Parallel C (UPC) is a language used to write parallel programs for distributed mem-

ory parallel computers. UPC-CHECK (http://hpcgroup.public.iastate.edu/UPC-CHECK/)

is a scalable tool developed to automatically detect argument errors in UPC functions and dead-

locks in UPC programs at run-time and issue high quality error messages to help programmers

quickly fix those errors. The run-time complexity of all detection techniques used are optimal,

i.e. O(1) except for deadlocks involving locks where it is theoretically known to be linear in

the number of threads. The tool is easy to use, and involves merely replacing the compiler

command with upc-check. Error messages issued by UPC-CHECK were evaluated using the

UPC RTED test suite for argument errors in UPC functions and deadlocks. Results of these

tests show that the error messages issued by UPC-CHECK for these tests are excellent.

1Primary researcher
2Graduate student
3Primary author
4Graduate advisor
5Author for correspondence
6Iowa State University’s High Performance Computing Group,

Iowa State University, Ames, Iowa 50011, USA.
email: jjc@iastate.edu, iroy@iastate.edu, kraeva@iastate.edu and grl@iastate.edu

7This work was supported by the United States Department of Defense & used resources of the Extreme
Scale Systems Center at Oak Ridge National Laboratory.

http://hpcgroup.public.iastate.edu/UPC-CHECK/

www.manaraa.com

4

2.2 Introduction

The importance of error detection is well documented by Glenn Luecke et al. [31]: “the

ability of system software to detect run-time errors and issue messages that help programmers

quickly correct these errors is an important productivity criterion for developing and maintain-

ing application programs”. However, studies show that currently the error detection capability

of compilers and run-time systems for Unified Parallel C (UPC) [10, 3, 17] is poor [25, 30].

Though tools to detect errors in serial, MPI [50, 20, 26, 32, 15] and OpenMP programs

[38, 4] exist, no tools for checking UPC programs existed when this work began. The authors

are aware of two other tools published since then, ROSE-CIRM with UPC extensions [39] and

UPC-SPIN [16]. UPC-CIRM detects “C style” errors in UPC programs but detects neither

deadlock errors nor argument errors in UPC functions. Therefore, it has no overlap with UPC-

CHECK. UPC-SPIN does not detect argument errors in UPC functions but can detect deadlock

errors. UPC-SPIN uses model checking to create a finite model of the parallel program and

then analyzes all possible control paths to search for deadlocks. This leads to a combinatorial

explosion in complexity both in time and memory space. The developer of UPC-SPIN states

in [16] that UPC-SPIN can only be used for small/moderate sized applications. Results from

the UPC-SPIN paper show the exponentially increasing time and memory requirements for the

analysis of the UPC NAS Parallel Benchmark (NPB) [7] Conjugate Gradient (CG). The results

reported show that the analysis could be completed for the model of NPB CG for a maximum of

4 threads. By design, UPC-CHECK avoids this problem by not computing all possible control

paths through the program, but instead focusing only on the current execution. Section 2.4.2

of this paper shows UPC-CHECK to be highly scalable, easily handling 128 threads for the

NPB CG and the other NPBs with minimal overhead. In fact, the overhead of UPC-CHECK

is so low that many applications could always be run with UPC-CHECK.

UPC-CHECK is an error detection tool which detects argument errors in UPC functions

and deadlocks in UPC programs at run-time. The tool is easy to use and merely involves

replacing the compiler command with upc-check on the command-line or in Makefile(s). To

make this tool scalable, a new optimal deadlock detection algorithm has been developed. The

www.manaraa.com

5

execution time complexity for finding deadlocks is O(T) where T is the number of threads.

The execution time complexity for finding deadlocks when only UPC collective operations are

involved is O(1). This algorithm is described in detail in [43, 42].

Section 2.3 provides an overview of UPC-CHECK including its design, functionality and

usage. Section 2.4 describes the function, scalability, overhead and compiler-independence

testing of UPC-CHECK. Section 2.6 contains an example illustrating how UPC-CHECK can

be used to find and correct a deadlock in a UPC program.

2.3 Overview of UPC-CHECK

If an error is allowed to occur, it may not be possible to report information accurately.

Therefore, UPC-CHECK has been designed to detect errors before they occur, while the pro-

gram is active and in a valid state. This allows the instrumented program to issue a correct

high quality error message and then exit gracefully.

For UPC-CHECK, both central manager and distributed error detection techniques were

considered. The distributed techniques were chosen over the simplicity of a central manager

technique for reasons of scalability and low overhead.

The authors considered using either a source-to-source translator or modifying an existing

open source UPC compiler. A source-to-source translator was chosen so that the tool would be

compiler and machine independent. The ROSE toolkit [40] developed at Lawrence Livermore

National Laboratory was chosen to write the UPC-CHECK source-to-source translator.

An overview of the UPC-CHECK tool can be seen in Figure 2.1. In the first step, the

UPC-CHECK translator instruments the original UPC files. The instrumented files call UPC-

CHECK functions which check for error conditions and record information which may be

required to issue good error messages.

UPC-CHECK supplies support files which contain the declarations and definitions of all

data structures, enumerations and functions used for error checking and issuing errors. In the

second step, the instrumented files are compiled along with the UPC-CHECK support files

using the user’s native UPC compiler to create an executable.

www.manaraa.com

6

Figure 2.1 Compiling files with UPC-CHECK

UPC-CHECK is designed for ease of use. The user must merely replace the UPC compiler

command with upc-check either on the command-line or in Makefiles. (UPC-CHECK assumes

that the original program compiles with the user’s native UPC compiler.)

The generated executable is run in the same manner as those created by using the user’s

native UPC compiler. However the executable created using UPC-CHECK can detect errors

and issue good error messages which can be used to debug the program. Details about the

usage of UPC-CHECK can be found in the UPC-CHECK tutorial[29] and user’s guide[19].

2.3.1 Instrumentation

Instrumentation is done as follows. Context information is stored in global variables. In-

formation that may be accessed by other threads is stored in shared variables. For execution

efficiency, information that is required only within a thread is stored in private variables.

Allocation and necessary initialization of variables, data structures etc. defined by UPC-

CHECK are inserted at the beginning of the program. File name and line number information

www.manaraa.com

7

is stored for every UPC operation encountered. The authors define UPC operation to be a

UPC function or a UPC statement that is not a C statement. To enforce the UPC specifica-

tion, instrumentation is inserted to check that no UPC collective routine is called between a

upc notify and an upc wait. To record that the thread has reached the end of execution, a

function call is inserted before every return statement in the main function and every exit()

function.

To check for argument errors in UPC functions, a call to the argument check function is

inserted before every UPC function.

To check for deadlock errors, a call is inserted before and after each UPC operation. The

call before the operation checks whether executing the operation would cause a deadlock. The

call after the operation is to record that the operation is complete and record any additional

information that might have been returned. In addition a function call to check for possible

deadlock conditions is inserted before every return statement in the main function and every

exit() function. More details of these functions are provided in Section2.3.2.

When tracking of function-call-stack is enabled, calls to functions to update the function-

call-stack are inserted before and after calls to user functions.

2.3.2 Errors detected by UPC-CHECK

UPC-CHECK detects all argument errors in UPC functions other than out-of-bound array

and pointer accesses and uninitialized variables. UPC-CHECK can detect all deadlocks and

livelocks that may arise during the execution of an UPC program.

2.3.2.1 Argument error detection

Before a UPC function call, the argument-error check function determines whether all the

arguments which are about to be passed to the UPC function satisfy the conditions set by the

UPC specification. There are over 350 argument error checks. These errors can be classified

into

• invalid argument errors and

www.manaraa.com

8

• non-single-valued argument errors.

Invalid argument errors are mostly related to undefined usage, e.g. passing of a negative

number for the thread index, passing undefined flags, etc. They also include error cases where

the value passed is inconsistent with values previously defined in the program. An example of

such an error is when the thread index passed is larger than the total number of threads used

in the program.

Some arguments of UPC collective operations are called single valued arguments. These

must have the same value on every thread. When this is not the case, the authors call this a

non-single-valued argument error.

2.3.2.2 Deadlock error detection

The authors have developed a new scalable algorithm for deadlock detection for UPC

programs. The algorithm has a complexity of O(1) when detecting deadlocks except those

involving chain of hold-and-wait lock dependencies where it is known to be O(T), where T is

the number of threads involved in the hold-and-wait chain. In [43, 42], the authors describe

the algorithm in detail, prove its correctness, determine its run-time complexity and prove its

optimality.

Detecting deadlock errors caused only by improper usage of collective opera-

tions First consider deadlocks that can be created using only collective operations. According

to the UPC specification, collective operations must be called on every thread and the order

of the calls to collective operations must be the same on all threads. Thus, there are two types

of deadlocks that could be caused by collective operations violating the above rules:

1. Some threads are waiting at a collective operation while others have finished execution,

2. Different threads are waiting at different collective operations.

Detecting deadlock conditions with locks Acquiring a lock through the upc lock

command is a blocking operation. This can give rise to the well-known circular hold-and-wait

www.manaraa.com

9

deadlock condition for acquiring locks. This is illustrated in Figure 2.2. The boxes in the figure

depict threads whereas the circles depict locks. A dashed arrow from a thread to a lock shows

that the thread is waiting to acquire the lock at the head of the arrow. On the other hand a

solid arrow from the lock to a thread shows that that lock is held by the thread at the head of

the arrow.

Figure 2.2 Circular dependencies of threads leading to a deadlock.

Secondly, deadlocks could be created if a lock was acquired but was never released by a

thread which has completed execution. Similar to the above case, if there is a chain of hold-

and-wait dependencies which can be resolved by unlocking this lock then all the threads in

that chain would be deadlocked.

Figure 2.3 Chain of dependencies leading to a thread that is either waiting

at a collective operation or has completed execution.

Thirdly, deadlocks could also be created when there is a chain of hold-and-wait dependencies

that can be resolved by unlocking a lock which is held by a thread blocked at a collective

operation, see Figure 2.3. The boxes in the figure depict a thread whereas the circles depict

www.manaraa.com

10

locks. A dashed arrow from a thread to a lock shows that the thread is waiting to acquire the

lock at the head of the arrow. On the other hand a solid arrow from the lock to a thread shows

that this lock is held by the thread at the head of the arrow. The thread which is blocked at

a collective operation is depicted by the gray box.

The UPC specification places an additional constraint on the use of lock functions. If the

upc unlock(L) function is not called by the thread that holds the lock L, the result is not

defined.

Similar to deadlocks, execution of threads does not progress when threads are busy-waiting

at a livelock. In UPC programs, a livelock can be created when the upc lock attempt function

is called within an infinite loop to acquire a lock which will never be released. UPC-CHECK

prints out a warning when a livelock condition is detected and exits after a timeout if set by

the user.

2.3.2.3 Handling upc forall statements

UPC-CHECK detects error conditions that could arise due to illegal control flow into

and out of the body of a ‘controlling’ upc forall loop. This is achieved by giving an unique

index to the code segment belonging to the body of every controlling upc forall. Any code

section outside the body of all controlling upc forall statements is assigned the index 0. During

execution, a variable maintains the index of the code section where the program control lies.

The following checks are performed for upc forall statements and error messages are issued if:

1. any thread encounters a collective operation inside the body of a controlling upc forall

loop,

2. any thread encounters a return statement inside the the body of a controlling upc forall

loop or a break statement which takes the control outside the body of a controlling

upc forall loop,

3. control jumps to a label inside the body of a controlling upc forall loop from a goto

statement in a region with index different from the region index of the body of this

upc forall loop, and

www.manaraa.com

11

4. control jumps to a label outside the body of any controlling upc forall loop from a goto

statement in a region with the index of a controlling upc forall statement.

Checking the single-valuedness of the condition -expression and the affinity-expression for

all the iterations of a upc forall statement results in serialization of the execution of iterations

across all threads. To maintain scalability, checking the single-valuedness of the condition-

expression and the affinity-expression of an upc forall statement has not been implemented in

UPC-CHECK.

2.4 Testing

UPC-CHECK has been thoroughly tested not only for known error cases but also against

false positive cases. In this section, function, scalability, overhead and compiler-independence

testing is decribed.

2.4.1 Function testing

UPC-CHECK was tested against over 350 test cases in the UPC RTED test suite [13]. The

test cases in the test suite are categorized under various error categories. Sections F, K.2 and

K.3 of this test-suite are related to argument errors in UPC functions, whereas Section B is

related to deadlock errors. To evaluate the run-time error detection (RTED) capabilities of

UPC run-time systems [30], the High Performance Computing (HPC) Group at Iowa State

University (ISU) [2] devised a scheme to score the quality of error messages issued. The scores

range from 0 to 5, where 0 means that the error was not detected and 5 means that the error

was detected and that the error message contains all the information required to fix the error

quickly. The score assigned to each error category is the avergae of the scores of all tests in

that category. The scores for argument errors in UPC functions and deadlock categories are

presented in Table 2.1.

Table 2.1 illustrates the improvement in the quality of error detection and error messages

generated by UPC-CHECK compared to other UPC run-time systems. The scores for UPC-

CHECK were found to be consistent across different compilers and machines. A more in-depth

www.manaraa.com

12

UPC Error

Category

Cray Berkeley HP GNU UPC-CHECK

Argument er-

rors in UPC

functions

0.38 0.17 0.00 0.00 4.89

Deadlocks 0.00 0.33 0.36 0.27 5.00

Table 2.1 Error detection and reporting scores: UPC-CHECK compared

to other systems

analysis of the scores reveals that UPC-CHECK achieves a score of 5 in every error test case

except for three argument error cases where it does not detect the error. These three argument

error cases relate to single-valuedness of the condition and affinity expressions of the upc forall

statement. This is not checked for in UPC-CHECK as has already been discussed in Section

2.3.2.3.

To further test UPC-CHECK’s ability to detect all cases of deadlock conditions that can

arise while executing an UPC program, additional tests were written. These deadlock condi-

tions have been discussed in detail in [43, 42].

For every error test, a positive test was created by correcting the error in the original test.

UPC-CHECK was tested against these positive tests to verify that no error messages were

issued. To demonstrate that UPC-CHECK can be used for larger UPC programs, the UPC

NPBs were also run using UPC-CHECK.

2.4.2 Scalability and overhead testing

2.4.2.1 Execution overhead

UPC-CHECK uses a scalable distributed deadlock detection algorithm. The algorithm has

a run-time complexity of O(1) in terms of private and shared memory accesses while detecting

errors created by UPC collective operations only; and a complexity of O(T) where T is the

number of threads when detecting deadlock conditions involving all UPC blocking operations

including locks. Checking argument errors in UPC functions has a complexity of O(1) for all

UPC functions. To demonstrate the low overhead, an instrumented version was created for

www.manaraa.com

13

each UPC NPB using UPC-CHECK. The execution times of the original and the instrumented

versions were compared when run on a CRAY XT with 128 threads. The results are shown

in Table 2.2. Execution times where the original benchmark did not run on the machine are

marked as Not Applicable(NA). The maximum slowdown is 5.2% and the average slowdown

is 0.86%. A slow-down of less than 0 means that the overhead involved due to the use of

UPC-CHECK was insignificant and likely caused by timer resolution issues.

Name- Original Instrumented Slow-down

Class (secs) (secs) (%)

CG-S 4.742 4.942 4.2

CG-W 15.664 15.708 0.3

CG-A 4.912 4.99 1.6

CG-B 54.183 54.239 0.1

CG-C 58.309 58.281 0

EP-S 1.145 1.145 0

EP-W 6.247 6.243 -0.01

EP-A 1.417 1.427 0.7

EP-B 7.116 7.128 0.2

EP-C 11.19 11.17 -0.2

FT-S NA NA NA

FT-W NA NA NA

FT-A NA NA NA

FT-B 15.528 15.556 0.2

FT-C 22.855 22.735 -0.2

IS-S 3.541 3.594 1.5

IS-W 10.422 10.961 5.2

IS-A 3.56 3.658 2.8

IS-B 8.752 8.776 0.3

IS-C 10.089 10.073 -0.2

MG-S NA NA NA

MG-W 8.288 8.308 0.2

MG-A NA NA NA

MG-B 9.293 9.341 0.5

MG-C 13.551 13.579 0.2

Maximum 5.2

Average 0.86

Table 2.2 Percentage slow-down of various UPC NAS parallel benchmark

on 128 threads.

www.manaraa.com

14

2.4.2.2 Memory Overhead

The memory requirement per thread of a program instrumented with UPC-CHECK is

less than 128 kilobytes per thread. If enabled, call stack tracking adds 0.5 kilobytes times

the maximum call depth. On average for every UPC function, 100 lines are added in the

instrumented program. Additionally, the support files add about 12,000 lines to the program.

2.5 Compiler-independence testing

UPC-CHECK was tested for compiler-independence using all function tests in Section 2.4.1

with the CRAY, Berkeley and GNU UPC compilers. All tests ran and produced identical error

messages for the three compilers.

The instrumented files and the support files are regular UPC files and thus can be compiled

by any compiler which conforms to the UPC specification. For UPC compilers that do not

support UPC-IO and/or UPC collectives, UPC-CHECK can still be used by setting appropriate

environment variables as described in the user’s guide[19].

2.6 Fixing errors using UPC-CHECK: An example

In this section, the authors present a simple example which shows how UPC-CHECK can

be used to quickly fix an error in a program. The program consists of two files ex3.upc and

ex3 s.upc and has a deadlock error condition because the upc barrier function is not called

by all threads. This error is difficult to find since the barrier is contained inside a function

which is called from within an if block. When issuing:

upcc -T 4 -o ex3 ex3.upc ex3 s.upc

upcrun -n 4 ./ex3

a deadlock occurs and the upcrun command never returns. When issuing:

upc-check -T 4 -o ex3 ex3.upc ex3 s.upc

upcrun -n 4 ./ex3

the following message is issued:

www.manaraa.com

15

Runtime error: Deadlock condition detected: One or more threads have

finished executing while other threads are waiting at a collective routine

Status of threads

=================

Thread id:Status:Presently waiting at line number:of file

——————————————————–

0:waiting at upc barrier: 7: /home/jjc/ex3 s.upc

1:reached end of execution through: 39: /home/jjc/ex3.upc

2:waiting at upc barrier: 7: /home/jjc/ex3 s.upc

3:waiting at upc barrier: 7: /home/jjc/ex3 s.upc

Using this error message, the error can be quickly identified and fixed. The upc barrier

is called from funcA. Two of the three possible paths through the two nested if statements

appear and contain a upc barrier, but the third possible (else) path is missing. This error

can be corrected by creating the missing else block at line 25 and placing either a call to

funcA, or a upc barri

-er call. If the location of the calls to funcA were not obvious, UPC-CHECK call-stack tracing

could be enabled to provide that information.

ex3.upc

...

6 /* function that returns an integer zero value is unlikely to be computed

at compile time */

7 int zero(){
8 return (int) (sin(0.1*MYTHREAD)/2.3);

9 }
...

20 /* called by thread 1 only */

21 if (MYTHREAD == 1) {
22 if (zero()) {
23 funcA();

24 }
25 /* Missing else block */

26 }
27

28 /* called by all other threads */

29 else {
30 funcA();

31 }
...

www.manaraa.com

16

ex3 s.upc

...

6 void funcA() {
7 upc barrier;

8 }
...

2.7 Summary

UPC is a language used to write parallel programs for distributed memory parallel comput-

ers. UPC compilers and run-time systems currently exhibit poor error detection capabilities.

UPC-CHECK is a tool developed to automatically detect argument errors in UPC functions

and deadlocks in UPC programs at run-time and issue high quality error messages to help

programmers quickly fix those errors.

UPC-CHECK uses a new scalable algorithm for deadlock detection. The average run-time

overhead of running UPC-CHECK on UPC NAS parallel benchmarks was less than 1% for 128

threads. UPC-CHECK has been extensively tested with over five hundred error test programs

using CRAY, Berkeley and GNU UPC compilers. Error messages issued by UPC-CHECK

were evaluated using the UPC RTED test suite [13] for argument errors in UPC functions and

deadlocks. Results of this testing show that the error messages issued by UPC-CHECK for

these tests are excellent.

UPC-CHECK has been designed for ease of use. It comes with a script to install itself

and all software upon which it is dependent. Using UPC-CHECK involves merely replacing

the compiler command with upc-check on the command-line or in Makefile(s). Necessary

documentation in the form of a user’s guide and tutorial is available.

www.manaraa.com

17

CHAPTER 3. A DISTRIBUTED, SCALABLE AND OPTIMAL

DEADLOCK DETECTION ALGORITHM FOR UNIFIED PARALLEL C

Modified from a paper to be submitted to International Conference for High Performance

Computing, Networking, Storage and Analysis (SC) 20127

Indranil Roy1236, Glenn R. Luecke456, James Coyle16, Marina Kraeva16, and

3.1 Abstract

Unified Parallel C (UPC) is a language used to write parallel programs for shared and dis-

tributed memory parallel computers. Deadlock detection in UPC programs requires detecting

deadlock scenarios that involve collective operations along with resource deadlocks defined in

the popular AND resource-request model. In this paper, a distributed and scalable deadlock

detection algorithm for UPC programs that uses run-time analysis is presented. The algo-

rithm detects deadlock scenarios in collective operations using a distributed technique with

O(1) run-time complexity irrespective of the collective operations involved. It combines this

technique with detecting resource deadlocks that involve acquiring locks by identifying cycles

in a shared wait-for-graph (WFG). The correctness and the optimality of the algorithm has

been proven. The algorithm has been implemented in the run-time error detection tool UPC-

CHECK and tested with over 150 functionality test cases. The scalability of this deadlock

1Primary researcher
2Graduate student
3Primary author
4Graduate advisor
5Author for correspondence
6Iowa State University’s High Performance Computing Group,

Iowa State University, Ames, Iowa 50011, USA.
email: iroy@iastate.edu, grl@iastate.edu, jjc@iastate.edu and kraeva@iastate.edu

www.manaraa.com

18

detection algorithm has been experimentally verified.

3.2 Introduction

Unified Parallel C (UPC) is an extension of the C programming language for parallel

execution on shared and distributed memory parallel machines [17, 6]. It uses the Partitioned

Global Address Space (PGAS) [54] parallel programming model where shared variables may

be directly read and written by any thread. Shared variables that are stored in the memory

of the thread are said to have affinity to that thread. “UPC combines the programmability

advantages of the shared memory programming paradigm and the control over data layout and

performance of the message passing programming paradigm” [5].

In this paper, a new deadlock detection algorithm to check for deadlocks in UPC programs

is presented. The algorithm uses run-time analysis. Its run-time complexity is proven to be

O(1) for detecting all deadlocks involving any UPC collective operations. In case of deadlocks

involving acquiring of locks, the algorithm has been extended to maintain a distributed and

shared Wait-For-Graph (WFG) and detect deadlocks using the AND model. In this case, the

complexity is O(T), where T is the number of threads in the WFG. Since the information must

be obtained from all threads in the deadlock, this method must be optimal. This deadlock

detection method has been implemented as part of the run-time error detection tool UPC-

CHECK [14]. The tool sucessfully detects all deadlock error test cases from the UPC RTED

test suite [13]. Scalability of this deadlock detection algorithm has been experimentally verified.

The rest of this paper is organized as follows. Section 3.3 provides the background of dif-

ferent deadlock detection techniques used in distributed systems, multi-core operating systems

and high performance parallel cluster machines. In Section 3.4, all deadlock and livelock condi-

tions which might arise in a UPC program are presented. An algorithm to detect these deadlock

conditions is described. The correctness, run-time complexity analysis and proof of optimality

of the algorithm are also provided. In Section 3.5 the scalability of the implementation of the

algorithm has been presented and analyzed.

www.manaraa.com

19

3.3 Background

Detecting deadlocks in various multi-process systems is well-studied. Depending on the

type of underlying resource-request model [24], deadlocks can occur in different ways. The

most generalized model in distributed systems is called the N-out-of-M model [8]. In this

model, if N out of the M resources requested by a process are granted, then the process is no

longer blocked. Two common special cases of this generalized model are: the AND (resource)

model where a process is blocked until it is granted all the resources it has requested, i.e. when

N=M ; and the OR model(communication) model where a process is blocked until it is granted

any one of the resources that it has requested, i.e. when N =1. There exist several algorithms

to detect deadlocks in the N-out-of-M model [8, 27, 11, 28], the AND model [9, 12, 18, 37,

41, 46, 52, 44, 23, 16, 50, 21] and the OR models [9, 22, 33, 36]. These algorithms maintain a

dependency graph called either a wait-for graph (WFG) or a resource allocation graph (RAG)

based on resources requested and resources acquired by different processes in the system. In

WFG, nodes represent blocked processes that are waiting to acquire a resource and a directed

edge (u,v) symbolizes a resource requested by process u which has been acquired and has still

not been released by process v. A cycle in the WFG represents a deadlock in the AND model.

Similarly, a knot in the WFG represents a deadlock in the OR model. A node u in the WFG

is defined to be in a knot if all nodes reachable from u can reach u. Algorithms to detect

deadlocks in distributed systems adopt centralized [28, 18, 16, 50, 21], distributed [8, 27, 9, 37]

or hybrid [11] methods to maintain WFGs or images of WFGs. In a multiprocessor shared

memory environment, the WFG can be stored in shared memory [52, 44, 23]. An alternative to

using WFGs to find cycles of dependencies is to use edge-chasing methods [35, 34, 46, 12, 41].

In these methods, a process u waiting for resources sends a probe message to all processes that

the process depends on. If there is a circular dependency, then u recieves the probe message

sent by itself which indicates the presence of a deadlock.

Detecting deadlocks in parallel programs for high performance computing (HPC) may need

to cover two sources of non-determinism: (a) conditional control-flow and (b) the semantics of

blocking communication operations. Deadlock detection techniques in HPC can be classified

www.manaraa.com

20

based on the amount of non-determinism that the techniques cover. The higher the amount of

non-determinism covered, the better is the formal verification of the program and lower is the

scalability. Deadlock detection techniques in HPC arranged in descending order of coverage

of non-determinism are model-checking, dynamic formal analysis and run-time analysis. In

model-checking [45, 16] a finite model of the program is created which simulates the depen-

dencies in the original program and then the model is checked for all possible deadlocks in all

possible execution paths. Therefore the model-checkers cover the non-determinism of control-

flows as well as non-determinism of the communication operations. Unfortunately, this solution

may not scale well for real-world problems. Dynamic formal verification methods [49, 53, 48]

do not cover the non-determinism of the control flow and hence can be used for larger pro-

grams. These methods intercept operations of interest and check for all deadlock conditions

covering the non-determinism of the operation. Such methods generally employ centralized

deadlock detection schemes which limits them to verifying executions using a small number

of processes. Due to poor utilization of cluster-resources, execution time of such methods is

usually very high. DAMPI [51] is a dynamic formal verfication tool which overcomes this short-

coming by using a distributed deadlock detection algorithm based on Lamport’s clocks only

for non-deterministic MPI operations and by using heuristics to bound the non-determinism

of the MPI operations. Run-time analysis is the least strict method of testing since it covers

neither the non-determinism of the control flow nor the non-determinism of the operation.

Such methods only cover the execution path followed by the program during that specific run

and the result of the non-determinism of the operation in that particular execution. Run-time

analysis methods may employ synchronized time-out based strategies [26, 32] or may create a

central process which maintains a WFG [26, 21] to detect deadlock conditions. It is notewor-

thy that WFGs for HPC programs like MPI programs [20] need to be different from the ones

explained for AND and OR models. This is because collective operations in such languages

create dependencies on a set of processes.

When compared to MPI, deadlock scenarios in UPC is marginally simplified. Firstly, com-

munication between two processes is non-blocking and secondly, non-determinism of collective

www.manaraa.com

21

operations in terms of ‘any source’ cannot occur. However, restrictions still exist on the or-

der of collective operations executed by each thread and the values passed to the single-valued

arguments passed on each thread. Non-adherence to these restrictions could lead to a deadlock.

3.4 Methodology

Our algorithm for deadlock detection in UPC programs uses run-time analysis . The

algorithm detects all possible deadlock conditions, including:

1. errors in collective operations and

2. unsatisfiable hold-and-wait dependencies when acquiring locks

The algorithm is implemented by inserting a call to:

• check entry() function before each UPC operation which checks whether executing the

operation would cause a deadlock,

• record exit() function after each UPC operation to record that the operation is complete

and record any additional information that might have been returned, and

• check final() function before every return statement in the main() function and every

exit() function to check for possible deadlock conditions.

Inserting these function calls can be achieved using a source-to-source translator. The imple-

mentation details have been left out in this paper. Interested readers are referred to [14].

Some terms used throughout the rest of this paper are:

1. THREADS is an integer variable that refers to the total number of threads with which

the execution of the application was initiated,

2. the state of a thread is defined as the enumeration of the UPC operation that a thread

has reached. In case the thread is executing an operation which is not a collective or

lock-related UPC operation, the state is set to the enumeration unknown.

www.manaraa.com

22

3. a single-valued argument is an argument of a UPC collective operation which must be

passed the same value on every thread.

4. the signature of a UPC operation on a thread means the enumeration of the UPC opera-

tion and the values which are about to be passed to each of the single-valued arguments

of the UPC operation on that thread.

3.4.1 Detecting deadlocks due to collective errors in collective operations

The UPC specification requires that the sequence of calls to UPC collective operations

must be the same across all threads [47]. Additionally, each ‘single-valued ’ argument of a

collective operation must have the same value on all threads. Therefore while using collective

UPC operations, deadlocks could be created if:

1. different threads are waiting at different collective operations,

2. values passed to single-valued arguments of collective functions do not match across all

threads, and

3. some threads are waiting at a collective operation while some have finished execution.

An algorithm to check whether any of the above 3 cases is going to occur needs to compare

the collective operation which the threads are going to execute next and their single-valued

arguments. Our algorithm achieves this by viewing the threads as if they were arranged in a

circular ring. The left and right neighbors of a thread i are thread (i − 1)%THREADS and

thread (i + 1)%THREADS respectively. Each thread checks whether its right neighbor has

reached the same collective operation as itself. Since this checking goes around the whole ring,

if all the threads arrive at the same collective operation, then each thread will be verified by

its left neighbor and there will be no mismatches. However, if any thread comes to a collective

operation which is not the same as that on the other thread, its left neighbor can identify

the discrepancy, and issue an error message. This has been illustrated in Figure 3.1. The

correctness of this approach is proven in Section 3.4.1.3.

www.manaraa.com

23

Figure 3.1 Creating consensus: threads checking state in a circular ring

fashion.

For any thread k, sk is a shared data structure which stores the signature of the collective

operation that thread has reached. The field sk.op stores the state of thread k. On reaching a

UPC operation, a thread k first records the signature of the collective operation in sk. Thread

k sets sk.op to unknown after exiting from a collective operation.

Let C(n, k) denote the signature of the nth collective operation executed by thread k. Also,

let thread j be the right neighbor of thread i. During execution, thread i or thread j could

reach their repective nth collective operation first. If thread i reaches the operation first, then

it cannot verify sj as sj has still not be assigned the value of C(n, j). The verification can

www.manaraa.com

24

Figure 3.2 Checking state: Thread i reaches collective operation before

thread j. (a) no error case. (b) error case.

be delayed until thread j reaches its nth collective operation. In order to implement this, we

introduce another state-machine variable named desired signature. The desired signature

of any thread k is represented by a shared variable named dsk. Both sk and dsk have affinity

to thread k. If thread i finds that thread j has not reached a collective operation (sj .op is

unknown), then it copies si to dsj . When thread j reaches a collective operation it first records

the signature in sj and then compares it with dsj . If they do not match, then thread j issues

an error message, otherwise it sets dsj .op to unknown and continues. This has been illustrated

in Figure 3.2.

If thread i reaches the collective operation after thread j (sj .op is set to the enumeration of

some collective UPC operation), then thread i compares sj with si. If they match, then there

www.manaraa.com

25

Figure 3.3 Checking state: Thread i reaches collective operation after

thread j. (a) no error case. (b) error case.

is no error, so execution continues. This has been illustrated in Figure 3.3.

In UPC, collective operations may or may not be synchronizing. To ensure that for neigh-

boring threads i and j, C(n, i) is compared to C(n, j) we have to ensure that:

1. If thread i reaches the nth collective operation before thread j and sets dsj to C(n, i), it

does not rewrite it before thread j has compared dsj with sj , and

2. If thread j reaches the nth collective operation before thread i and sets sj to C(n, j), it

does not rewrite sj before either thread i has a chance to compare it with si or thread j

has a chance to compare it with dsj .

www.manaraa.com

26

In order to achieve the behavior described above, two shared variables r sj and r dsj are

used for every thread j. Variable r sj is used to prevent thread j from rewriting sj before

the comparisons described above. Similarly, variable r dsj is used to prevent thread i from

rewriting dsj before the above comparisons are made. Both r sj and r dsj are stored in the

affinity of thread j.

For thread j, shared data structures sj and dsj are accessed by thread i and thread j. To

avoid race conditions, accesses to sj and dsj are guarded using lock L[j].

The pseudo-code of the distributed algorithm on each thread i to check deadlocks caused

by incorrect or missing calls to collective operations has been presented below. While checking

whether the thread has reached the right collective operation, both the enumeration of the

collective operation and its arguments are checked. For conciseness, the following operations

are defined:

1. bj ← ai means

(a) assign value of variable ai.op to variable bj .op, and

(b) if ai.op 6= end of execution, copy values of single-valued arguments from thread i

to shared space on thread j

2. bj � ai is true if

(a) bj .op 6= ai.op, or

(b) if ai.op 6= end of execution, any of the single-valued arguments on thread j is not

identical to its corresponding argument on thread i

Function check entry() recieves as argument the signature of the collective operation that

the thread has reached, namely f sig.

3.4.1.1 Algorithm A1: Detecting unmatched sequences of calls to collective

operations

1: On thread i:

www.manaraa.com

27

2: ———————————————————————–

3: Initialization

4: si.op← dsi.op← unknown, r si ← 1, r dsj ← 1

5: ———————————————————————–

6: {Function definition of check entry(f sig):}

7: if THREADS = 1 then

8: Exit check.

9: else

10:

11: Acquire L[i]

12: si ← f sig

13: r si ← 0

14: if dsi.op 6= unknown then

15: {Thread i− 1 reached the collective operation before thread i}

16: if dsi � si then

17: Print error and call global exit function.

18: end if

19: r si ← 1

20: r dsi ← 1

21: dsi.op← unknown

22: end if

23: Release L[i]

24: Wait until r dsj = 1

25: Acquire L[j]

26: {This thread is supposed to check sj or set dsj}

27: if sj .op = unknown then

28: {Thread j hasn’t reached the collective operation. Set the dsj, for thread

j to check against when it reaches a collective operation.}

www.manaraa.com

28

29: dsj ← si

30: r dsj ← 0

31: else

32: {Check if thread j reached the same collective operation}

33: if sj � si then

34: Print error and call global exit function

35: end if

36: r sj ← 1

37: end if

38: Release L[j]

39: end if

40: ———————————————————————–

41: {Function definition of check exit():}

42: Wait until r si = 1

43: Acquire L[i]

44: si.op← unknown

45: Release L[i]

46: ———————————————————————–

47: {Function definition of check final():}

48: Acquire L[i]

49: si.op← end of execution

50: Release L[i]

51: ———————————————————————–

3.4.1.2 Detecting additional errors involving upc notify and upc wait opera-

tions

The compound statement {upc notify; upc wait} forms a split barrier in UPC. The UPC

specification requires that firstly, there should be a strictly alternating sequence of upc notify

www.manaraa.com

29

and upc wait calls, starting with a upc notify call and ending with a upc wait call. Secondly,

there can be no collective operation between a upc notify and its corresponding upc wait call.

These conditions are checked using a private binary flag on each thread which is set when a

upc notify statement is encountered and reset when a upc wait statement is encountered. This

binary flag is initially reset. If any collective operation other than upc wait is encountered when

the flag is set, then there must be an error. Similarly, if a upc wait statement is encountered

when the flag is reset, then there must be an error. Finally, if the execution ends, while the flag

is set, then there must be an error. These checks are performed along with the above algorithm

and do not require any communication between threads. Also modifying and checking private

flags is an operation with complexity of O(1).

It is noteworthy that the above checks mandate that if all the threads issue the upc notify

statement, then the next UPC collective operation issued on all the threads must be a upc wait

statement. Therefore algorithm A1 working in unison with the above check needs to only verify

the ordering of upc wait across the threads. The ordering of the upc wait statements across

the threads is automatically guaranteed with the above mentioned checks. This is reflected in

Algorithm A2.

3.4.1.3 Proof of Correctness

The proof of correctness is structured as follows. First, it is proved that the algorithm is

free of deadlocks and livelocks. Second, Lemma 3.4.1 and Lemma 3.4.2 are used to prove that

for any thread j, C(n, j) is compared to C(n, i) in Lemma 3.4.3. Finally, using Lemma 3.4.3,

the correctness of the algorithm is proven by showing that : 1. no error message is issued if

all the threads have reached the same collective operation with the same signature and 2. an

error message is definitely issued if even one thread has reached a collective operation with a

signature different from any other thread. Case 1 is proved by Theorem 3.4.4 and Case 2 is

proved by Theorem 3.4.5.

There is no hold-and-wait condition in algorithm A1, hence there cannot be any deadlocks

in the algorithm. To show that the algorithm is livelock-free, any thread must eventually exit

www.manaraa.com

30

the while loops on line 24 and 42. On reaching C(n, i), thread i can wait at line 24 if thread i

itself had set r dsj to 0 on line 30 on reaching C(n−1, i). This is possible only if thread i found

that sj .op = unknown on line 27, i.e. thread j is not executing an UPC collective operation.

Eventually thread j either reaches end of execution or an UPC collective operation. In the

former case, a deadlock condition is detected and an error message is issued. In the second

case, thread j finds conditional statement on line 14 to be true and sets r dsj to 1 on line 20.

Since only thread i can set r dsj to 0 again, it would definitely exit the waiting on line 24.

Similarly, for thread j to be waiting at line 42 after executing C(n, j), it must not have set r sj

to 1 at line 19. This means that dsj .op must be equal to unknown at line 14, implying that

thread i has still not executed line 29 and hence line 27 due to the atomic nature of operations

accorded by L[j]. When thread i finally acquires L[j], the conditional statement on line 27

mast evaluate to false. If thread i has reached a collective operation with a signature different

for C(n, j) a deadlock error message is issued, otherwise r sj is set to 1. Since only thread j

can set r sj to 0 again, it must exit the waiting at line 42.

Lemma 3.4.1 After thread i assigns C(n, i) to dsj, then thread i does not rewrite dsj before

thread j compares sj with dsj.

Proof This situation arises only if thread i has reached a collective operation first. After

thread i sets dsj to si (which is already set to C(n, i)) at line 29, it sets r dsj to 0 at line

30. Thread i cannot rewrite dsj until r dsj is set to 1. Only thread j can set r dsj to 1 after

comparing sj with dsj at line 21.

Lemma 3.4.2 After thread j assigns C(n, j) to sj, then thread j does not rewrite sj before it

is compared with si.

Proof After thread j assigns C(n, j) to sj at line 13, it sets r sj to 0. Thread j cannot modify

sj until r sj is set to 1. If thread i has already reached the collective operation, then thread j

sets r sj to 1 at line 20 only after comparing sj with dsj at line 17. However, thread i must

have copied the value of si to dsj at line 29. Alternatively, thread j might have reached the

www.manaraa.com

31

collective operation first. In this case, thread i sets r sj to 1 at line 36 after comparing si to

sj at line 33.

Lemma 3.4.3 For any neighboring threads i and j, C(n, i) is always compared with C(n, j).

Proof This is proved through induction.

Basis. C(1, i) is compared with C(1, j). If thread i reaches collective operation C(1, i) first,

then it sets dsj to C(1, i). Using Lemma 3.4.1, thread i cannot modify dsj until dsj is compared

with sj by thread j on reaching its first collective operation, C(1, j). Alternatively, if thread

j reaches its collective operation first, then Lemma 3.4.2 states that after thread j assigns

C(1, j) to sj , thread j does not rewrite sj before it is compared with si. The comparison, with

si is done by thread i after it reaches its first collective operation and has set si to C(1, i).

Inductive step. If C(n, i) is compared with C(n, j), then it can be proven that C(n+1, i)

is compared with C(n + 1, j). If thread i reaches its next collective operation C(n + 1, i) first,

then it sets dsj to C(n + 1, i). Using Lemma 3.4.1, thread i cannot modify dsj until dsj

is compared with sj by thread j on reaching its next collective operation, i.e. C(n + 1, j).

Alternatively, if thread j reaches its next collective operation first, then Lemma 3.4.2 states

that after thread j assigns C(n+ 1, j) to sj , thread j does not rewrite sj before it is compared

with si. The comparison, with si is done by thread i after it reaches its next collective operation

and set si to C(n + 1, i).

Using Lemma 3.4.3, it is proven that for any neighboring thread pair i and j, the nth

collective operation of thread i is compared with the nth collective operation of thread j. As

j varies from 0 to THREADS − 1, it can be said that when the nth collective operation is

encountered on any thread, it is checked against the nth encountered collective operation on

every other thread before proceeding. Thus in the following proofs, we need to only concentrate

on a single (potentially different) collective operation on each thread. In the following proofs,

the nth collective operation encountered by each thread is considered. If a state or desired state

ai.op is unknown, then it is denoted as a = U for succinctness. Then in algorithm A1, after

recording the signature of the encountered collective operation, i.e. line si ← f sig, notice

www.manaraa.com

32

that for thread i:

si must be C(n, i),

dsi must be either U or C(n, i− 1),

sj must be either U or C(n, j), and

dsj must be U .

Theorem 3.4.4 If all the threads arrive at the same collective operation, and the collective

operation has the same signature on all threads, then Algorithm A1 will not issue an error

message.

Proof If THREADS is 1, no error message is issued, so we need to consider only cases of

execution when THREADS > 1. If all threads arrive at the same collective operation with

the same signature, then during the checks after si ← f sig, C(n, i) is the same for all i. Let C

denote this common signature. We will prove this theorem by contradiction. An error message

is printed only if:

1. dsi 6= U and dsi 6= si ⇒ dsi = C and dsi 6= C ⇒ C 6= C (contradiction) or

2. sj 6= U and sj 6= si ⇒ sj = C and sj 6= C ⇒ C 6= C (contradiction)

So Theorem 3.4.4 is proved.

Theorem 3.4.5 If even one thread has reached a collective operation with a signature different

from any other thread, then an error message is issued.

Proof There can be a mismatch in the collective operation or its signature only if there is

more than one thread.

Since the signature of the collective operations reached on every thread is not identical,

there must be some thread i for which C(n, i) � C(n, j).For these threads i and j, the following

actions are atomic and mutually exclusive through use of lock L[j]:

• Action 1: Thread i checks sj . If sj = U , then thread i executes dsj ← si, else, computes

sj � si and issues an error message if true.

www.manaraa.com

33

• Action 2: Thread j assigns the signature of the collective operation it has reached to sj .

Thread j checks dsj . If dsj 6= U , the thread j computes dsj � sj and issues message if

true.

There are only two possible cases of execution: either action 1 is followed by action 2 or vice

versa.

In the first case, in action 1, thread i finds sj = U is true, executes dsj ← C(n, i) and

continues. Then in action 2, thread j executes sj ← C(n, j), finds that dsj 6= U and hence

computes dsj � sj . Now, since dsj = C(n, i) and sj = C(n, j) and C(n, i) 6= C(n, j) (by

assumption) ⇒ dsj � sj is true. Therefore thread j issues an error message.

In the second case, in action 2, thread j assigns sj ← C(n, j), finds dsj = U and continues.

Before thread i initiates action 1 by acquiring L[j], it must have executed si ← C(n, i). If

dsi 6= U and dsi � si, then an error message is issued by thread i, otherwise it initiates action

1. Thread i finds sj 6= U and computes sj � si. Now, since si = C(n, i) and sj = C(n, j)

and C(n, i) � C(n, j) (by assumption) ⇒ sj � sj is true. Therefore thread i issues an error

messages.

Since the above two cases are exhaustive, an error is always issued if C(n, i) � C(n, j) and

hence Theorem 3.4.5 is proved.

3.4.1.4 Complexity analysis

:

The complexity of the Algorithm A1 is O(1) and can be proven as follows:

• thread i only acquires lock L[i] and L[j] which can only be held by its left and right

neighbors respectively,

• thread i may wait for atmost its left and right neighbor.

Theorem 3.4.6 Algorithm A1 is optimal.

Proof . The input of any algorithm which determines whether all the threads issue the same

collective operation is Ω(THREADS). Therefore per thread the input complexity is Ω(1). In

www.manaraa.com

34

other words, for any deterministic algorithm every thread will at least need to let the algorithm

know what collective operation it is going to execute. Given that algorithm A1 has a complexity

of O(1), and any solution to this problem is Ω(1), algorithm A1 must be optimal.

3.4.2 Detecting deadlocks and livelocks created by hold-and-wait dependency

chains for acquiring locks

In UPC, acquiring a lock with a call to the upc lock() function is a blocking operation. In

UPC program, deadlocks involving locks occur when there exists one of the following conditions:

1. a cycle of hold-and-wait dependencies amongst two or more threads, or

2. a chain of hold-and-wait dependencies ending in a lock held by a thread which has

completed execution, or

3. a chain of hold-and-wait dependencies ending in a lock held by a thread which is blocked

at a synchronizing collective UPC operation.

Deadlocks caused by the hold-and-wait dependencies can be detected using a WFG shown

in Figure 3.4. Threads waiting for a lock are shown using boxes whereas locks are shown as

circles. A dashed arrow from a thread to the lock depicts that thread is waiting for that lock.

A solid arrow from a lock to a thread shows that thread is holding that lock.

Figure 3.4 Circular dependencies of threads leading to a deadlock.

www.manaraa.com

35

Using the same notations for locks, threads, hold and wait actions, Figure 3.5 illustrates

a chain of hold-and-wait dependencies. This chain of dependencies will never be resolved if

the lock held by the thread depicted as the grey box will never be released. This can happen

only if the thread has either completed execution or is blocked at a synchronizing collective

operation which will not be completed.

Figure 3.5 Chain of hold-and wait dependencies while trying to acquire a

lock leading to a deadlock.

Before a thread l tries to acquire a lock, it checks if the lock is free or not. If it is free, the

thread continues exection. Otherwise, if the lock is held by thread q, thread l checks sq.op to

check if thread q:

1. is not executing a collective UPC operation or upc lock operation (sq.op is unknown),

or

2. is waiting to acquire a lock, or

3. has completed execution, or

4. is waiting at a synchronizing collective UPC operation.

If thread q is waiting to acquire a lock, then thread l continues to check the state of the next

thread in the chain of dependencies. If thread l finally reaches thread m which is not executing

a collective UPC operation or upc lock operation, then no deadlock is detected. If thread l

finds itself along the chain dependencies, then it reports a deadlock condition. Similarly, if

thread l finds thread m which has completed execution at the end of the chain of dependencies,

then it issues an error message.

When the chain of dependencies ends with a thread waiting at a collective synchronizing

operation, the deadlock detection algorithm needs to identify whether the thread will finish

executing the collective operation or not. Figure 3.6 illustrates these two cases. Thread l is

trying to acquire a lock in a chain of dependencies ending with thread m. When thread l checks

www.manaraa.com

36

the sm.op of thread m, thread m may (a) not have returned from the synchronizing collective

operation Cs(n,m), (b) have returned from Cs(n,m) but not have updated the sm.op in the

check exit() function after Cs(n,m), (c) have completed executing check entry() function

for the next synchronizing collective operation Cs(n + 1,m), or (d) waiting at synchronizing

collective operation Cs(n+1,m). Cs(n,m) must be a validated synchronization operation that

all threads must have called. Therefore scenarios (a) and (b) are not deadlock conditions, while

(c) and (d) are. To identify and differentiate between these scenarios, a binary shared variable

sync phasek is introduced for each thread k. Initially sync phasek is set to 0 for all threads.

At the beginning of each check entry() function on thread k, the value sync phasek is toggled.

Thread l can now identify the scenarios by just comparing sync phasel and sync phasem. If

they match (are in-phase), then it is either scenario (a) or (b) and hence no deadlock error

message is issued. If they do not match (are out-of-phase), then it is either scenario (c) or (d)

and hence a deadlock error message is issued.

Figure 3.6 Possible scenarios while detecting deadlocks involving chain of

hold-and wait dependencies. Scenario (a) or (b) is not a dead-

lock condition, while scenario (c) or (d) is.

www.manaraa.com

37

Similar to deadlocks, execution of threads does not progress when threads are busy-waiting

at a livelock. In UPC programs, a livelock condition is created when upc lock attempt function

is called within an infinite loop to acquire a lock which will not be released. A livelock can be

detected using the same WFG and deadlock conditions. Therefore, the same algorithm can

be used to identify both deadlocks and livelocks. In case of livelocks, a warning is issued only

after the same set of dependencies persists for a user-defined interval of time.

3.4.3 The complete algorithm

The complete algorithm to detect deadlocks created by errors in collective operations

and hold-and-wait dependency chains for acquiring locks is presented below. The function

check entry() recieves two arguments: 1) the signature of the UPC operation that the thread

has reached, namely f sig and 2) the pointer L ptr which points to the lock which the thread is

trying to acquire or release if the thread has reached a upc lock, upc lock attempt or upc unlock

statement. The check entry() and record exit() functions have two arguments. The first ar-

gument f sig is the signature of the UPC operation that the thread has reached. The second

argument L ptr points to a lock if the thread has reached a upc lock, upc lock attempt or

upc unlock statement. Algorithm A2.

1: On thread i:

2: ———————————————————————–

3: Initialization

4: Create empty list of acquired and requested locks

5: si.op← dsi.op← unknown, r si ← 1, r dsj ← 1, (sync phasei ← 0)

6: ———————————————————————–

7: {Function definition of check entry(f sig, L ptr):}

8: Acquire L[i]

9: si ← f sig

10: Release L[i]

11: if f sig.op = at upc wait statement then

www.manaraa.com

38

12: Exit check

13: else if f sig.op = at upc lock operation then

14: Acquire c L

15: if L ptr is already held by this thread then

16: Print suitable error and call global exit

17: else if this dependency is part of a chain leading to a lock which is held by

a thread finished execution without freeing the lock then

18: Print suitable error and call global exit

19: else if this dependency is part of a chain leading to a lock which is held by a

thread which is blocked at an out-of-phase synchronizing collective operation

then

20: Print suitable error and call global exit

21: else if this dependency creates a circular chain of hold-and-wait dependencies

then

22: Print suitable error and call global exit

23: else

24: Update list of requested locks

25: Release c L

26: Exit check

27: end if

28: else if f sig.op = at upc unlock operation then

29: if L ptr is not held by this thread then

30: Print suitable error and call global exit.

31: else

32: Update list of acquired locks

33: Exit check

34: end if

35: else if f sig.op = at upc lock attempt operation then

www.manaraa.com

39

36: Acquire c L

37: if L ptr is already held by this thread then

38: Print suitable warning

39: else if this dependency is part of a chain leading to a lock which is held by

a thread finished execution without freeing the lock then

40: Print suitable warning

41: else if this dependency is part of a chain leading to a lock which is held by

a thread which is blocked at an out-of-phase synchronizing collective routine

then

42: Print suitable warning

43: else if this dependency creates a circular chain of hold-and-wait dependencies

then

44: Print suitable warning

45: else

46: Update list of requested locks

47: end if

48: Release c L

49: Exit check

50: else

51: {Thread must have reached a collective operation}

52: if THREADS = 1 then

53: Exit check.

54: end if

55: Acquire c L

56: if this thread holds locks which are in the list of requested locks then

57: Print suitable error and call global exit.

58: end if

59: Release c L

www.manaraa.com

40

60: Acquire L[i]

61: r si ← 0

62: if this is a synchronizing collective operation then

63: sync phasei ← (sync phasei + 1)%2

64: end if

65: if dsi.op 6= unknown then

66: {Thread i− 1 reached the collective operation before thread i}

67: if dsi � si then

68: Print error and call global exit function.

69: end if

70: r si ← 1

71: r dsi ← 1

72: dsi.op← unknown

73: end if

74: Release lock L[i]

75: Wait until r dsj = 1

76: Acquire lock L[j]

77: {This thread is supposed to check sj or set dsj}

78: if sj .op = unknown then

79: {Thread j hasn’t reached the collective operation. Set the dsj, for thread

j to check against when it reaches a collective operation.}

80: dsj ← si

81: r dsj ← 0

82: else

83: {Check if thread j reached the same collective operation}

84: if sj � si then

85: Print error and call global exit function

86: end if

www.manaraa.com

41

87: r sj ← 1

88: end if

89: Release lock L[j]

90: end if

91: ———————————————————————–

92: {Function definition of check exit(f sig, L ptr):}

93: Wait until r si = 1

94: Acquire L[i]

95: si ← unknown

96: Release L[i]

97: if f sig.op = at upc lock operation then

98: Acquire c L

99: Remove L ptr from the list of requested locks

100: Add L ptr to the list of acquired locks

101: Release c L

102: Continue execution.

103: else if f sig.op = at upc lock attempt operation then

104: if L ptr was achieved then

105: Acquire c L

106: Remove L ptr from the list of requested locks

107: Add L ptr to the list of acquired locks

108: Release c L

109: end if

110: Continue execution.

111: else

112: Continue execution.

113: end if

114: ———————————————————————

www.manaraa.com

42

115: {Function definition of check final():}

116: Acquire L[i]

117: si ← end of execution

118: Release L[i]

119: Acquire c L

120: if this thread holds locks which are in the list of requested locks then

121: Print suitable error and call global exit.

122: end if

123: if this thread is still holding locks then

124: Print suitable warning

125: end if

126: Release c L

127: ———————————————————————

Checking for dependency chains and cycles adds only a constant time to each thread in

the cycle. This means that it adds time of only O(T) where T is the number of threads

involved in the dependency chain. This is optimal within a constant as detecting chains and

cycles requires information to be obtained from each thread in the chain or cycle. For all

other UPC operations, the algorithm is of O(1) complexity which we have already proven to

be optimal. Thus our algorithm is optimal for detecting deadlocks in UPC and checking for

single-valuedness of arguments of collective UPC operations in applications written using the

UPC language.

3.5 Experimental verification of scalability

This deadlock detection algorithm has been implemented in the UPC-CHECK tool [14].

UPC-CHECK was used to experimentally verify the scalability of this algorithm on a Cray XT

machine running the CLE 3.1 operating system and the Cray C 7.4.3 compiler. This machine

has 20 compute nodes, each node having 8 cores making a total of 160 cores. Since we are

interested in the verification of scalability, the authors measured the overhead of our deadlock

www.manaraa.com

43

detection method for 16, 32, 64 and 128 threads. The verification of scalability was carried out

by first measuring the overhead incurred when calling a UPC collective operation and then

measuring the overhead when running the CG and IS UPC NAS Parallel Benchmarks [7].

The authors first measured the overhead of checking for deadlocks involving the upc all broadcast

operation with a message consisting of one 4 byte integer. Since deadlock checking is indepen-

dent of the message size, the small message size was used so that the checking overhead could

be easily measured. To measure the time accurately, 10,000 calls to upc all broadcast were

timed and an average reported.

time (t1);

for (i = 0; i < 10000; i++)

{

upc_all_broadcast;

}

time {t2};

bcast_time = (t2 - t1)/10000;

Overhead times ranged from 549 to 572 microseconds for 16, 32, 64 and 128 threads. When

replacing upc all broadcast with upc all gather all, overhead times ranged from 512 to 528

microseconds. In both cases, the overhead is nearly constant and confirms that the overhead

of deadlock checking does not depend on the number of threads, i.e. the run-time complexity

of the deadlock detection algorithm for collective operations is O(1).

Timing results for the UPC NPB CG and IS benchmarks are presented in Tables 3.1

and 3.2. These results also demonstrate the scalability of the deadlock detection algorithm

presented in this paper.

3.6 Conclusion

In this paper, a new distributed, optimal and scalable deadlock detection algorithm using

run-time analysis has been presented for UPC programs. The algorithm utilizes a distributed

www.manaraa.com

44

Class B Class C

Threads Without

checks

With

checks

Overhead Without

checks

With

checks

Overhead

16 15.4 29.8 14.4 34.0 61.6 27.6

32 14.1 26.8 12.7 24.1 43.2 19.1

64 14.6 26.1 11.5 20.8 36.0 15.2

128 20.5 32.7 12.2 24.4 38.3 13.9

Table 3.1 Time in seconds of the UPC NPB-CG benchmark with and with-

out deadlock checking

Class B Class C

Threads Without

checks

With

checks

Overhead Without

checks

With

checks

Overhead

16 0.76 1.03 0.27 2.72 3.87 1.15

32 0.78 0.93 0.15 2.65 3.17 0.52

64 0.86 0.94 0.08 2.20 2.52 0.32

128 0.96 1.04 0.08 1.94 2.13 0.19

Table 3.2 Time in seconds of the UPC NPB-IS benchmark with and with-

out deadlock checking

technique to check deadlock errors in collective operations and uses a distributed wait-for-

graph for detecting deadlocks involving locks. The algorithmm has been proven to be correct

and to have a run-time complexity of O(1) when detecting errors in UPC collective opera-

tions. This algorithm has been extended to detect deadlocks involving locks with a run-time

complexity of O(T), T is the number of threads involved in the deadlock. The algorithm

has been implemented in the run-time error detection tool UPC-CHECK and tested with over

150 functionality test cases. The scalability of this deadlock detection algorithm has been

experimentally verified.

Acknowledgment

This work was supported by the United States Department of Defense & used resources of

the Extreme Scale Systems Center at Oak Ridge National Laboratory.

www.manaraa.com

45

CHAPTER 4. GENERAL CONCLUSIONS

Today’s high performance programs could consists of thousands of lines of code, implement

extremely complex algorithms, and run on hundreds of thousands of cores. Debugging such

programs often requires intricate understanding of the program. This is often difficult with

such large programs written by a team of people and over a period of time. Good quality error

messages could enable programmers to fix the errors in their programs quickly.

UPC is an extension of C programming language for parallel execution on shared and

distributed memory parallel machines using the Partitioned Global Address Space (PGAS)

programming model. Previous work by Professor Glenn Luecke’s High Performance Computing

(HPC) Group at Iowa State University (ISU) found that most UPC compilers and run-time

environments either fail to detect an error or provide very poor error messages.

As a remedy, a run-time error detection tool called UPC-CHECK has been developed. The

tool can be used on any system where the user intends to build and execute UPC-programs.

UPC-CHECK can handle argument errors and deadlock errors in UPC programs. It employs

a novel optimal and distributed run-time algorithm to detect deadlocks created by collective

operations in UPC. The algorithm has a run-time complexity of O(1) while detecting deadlocks

created by errors in collective operations. The above algorithm is extended to detect deadlock

conditions while trying to acquire locks by using a distributed shared Wait-For-Graph.

In addition to detecting argument errors and deadlock errors in UPC programs, UPC-

CHECK can detect some errors involving wrong order of UPC operations, such as unmatched

upc notify and upc wait statement and illegal control flow into or out of the body of a con-

trolling upc forall loop.

UPC-CHECK is very easy to use and comes with necessary documentation in the form of

www.manaraa.com

46

a User’s Guide and Tutorial. A script is also provided to install the tool itself and all software

that it is dependent on. The tool is primarily based on a source-to-source translator and is

therefore machine and compiler independent. It has been extensively tested for hundreds of

error tests as well as error-free tests.

With UPC-CHECK, a near complete coverage of possible argument errors and deadlock

errors has been shown using comprehensive test suites. The error messages produced provide

the line number, executing thread and file name where the error occurred as well as additional

information that will help fix the detected error. Initial testing with real-life UPC programs

like the UPC NAS parallel benchmark yielded favorable results regarding the efficiency and

scalibility of UPC-CHECK. It is hoped that with the proven scalability and low overhead UPC-

CHECK can provide a good programming environment to develop and debug UPC programs.

www.manaraa.com

47

APPENDIX A. USER’S GUIDE FOR UPC-CHECK 1.0

Jim Coyle and Marina Kraeva.

High Performance Computing Group

Iowa State University

A.1 Background

UPC is an extension of C programming language for parallel execution on shared or dis-

tributed memory parallel machines[3] that uses the Partitioned Global Address Space (PGAS)

programming model. UPC-CHECK 1.0 is a tool for the automatic detection of deadlocks and

argument errors in UPC functions. UPC-CHECK was developed by Professor Glenn Luecke’s

High Performance Computing (HPC) Group at Iowa State University (ISU). Error messages

issued by UPC-CHECK have been designed to help users quickly fix the problems detected.

UPC-CHECK 1.0 was tested using the UPC Run-Time Error Detection test suite[13] developed

by ISU’S HPC Group.

A.2 How to use UPC-CHECK

UPC-CHECK uses the ROSE Toolkit from Lawrence Livermore National Laboratory to

instrument UPC source code. When the instrumented source code is run, run-time errors are

detected and error messages are issued to help fix the errors. Error messages provide the line

number, executing thread and file name where the error occurred as well as additional infor-

mation that will help fix the detected error.

To instrument sourcefile.upc and compile the instrumented UPC program, issue

upc-check [compiler options] [--upccheck:flag [--upccheck:flag] ...]

www.manaraa.com

48

-c sourcefile.upc

where “compiler options” are options which will be passed to the UPC compiler after instru-

mentation. This will produce a file named sourcefile.instrumented.o.

To instrument sourcefile.upc, compile and link the instrumented UPC program issue

upc-check [compiler and upccheck: options] -o a.out sourcefile.upc

This will produce an executable named a.out with the UPC-CHECK support routines au-

tomatically included. The executable created can then be run and the errors detected by

UPC-CHECK will be reported. UPC-CHECK allows multiple source files, e.g.

upc-check [compiler and upccheck: options] -o a.out sourcefile1.upc

sourcefile2.upc

Notice that UPC-CHECK is used by merely replacing the compiler name with upc-check.

UPC-CHECK automatically performs both deadlock and argument error checking, but each

of these checks can be turned off to reduce running time for the instrumented executable if

desired. The flags for the UPC-CHECK option, −−upccheck, are listed in the following table.

Notice that there is a flag to enable UPC-CHECK to trace function call stacks.

-a|-d argument check disables argument checking (enabled by default)

-d|-d deadlock check disables deadlock checking (enabled by default)

-s|-e track func call stack enables tracing of function call stack (disabled by

default)

-h|--h|-help prints help for UPC-CHECK

For example, to disable deadlock checking in UPC-CHECK, one would issue

upc-check -d deadlock check -o source.out sourcefile.upc

A.3 Environmental Variables:

UPCCHECK STOP ON ERROR : By default, UPC-CHECK will stop on an error and

continue on a warning. Setting the environmental variable UPCCHECK STOP ON ERROR

to FALSE will allow execution to continue when UPC-CHECK finds an error. This could be

www.manaraa.com

49

used to find more than one error in a single run.

UPCCHECK LIVELOCK TIMEOUT : In some cases, a process may loop on upc lock attempt

forever, because another thread holds the lock. This is not a deadlock because at least one

thread may continue executing. To contrast this from deadlock, this is called a livelock. To

detect this case, we use a timeout value 300 seconds from the time a upc lock attempt is issued

until it is satisfied. If the upc lock attempt is not satisfied within that time, an error message

will be printed to STDERR reporting that a livelock condition may be present. This message

will include the upc lock attempt location and the lock involved. The environmental variable

UPCCHECK LIVELOCK TIMEOUT allows the timeout value to be changed from the default

value of 300 to some other number of seconds.

A.4 Installation Guide for UPC-CHECK 1.0

To use UPC-CHECK, one must already have a UPC compiler installed. The install UPC-

CHECK script below assumes that a UPC compiler is installed and is in the path of the user

who is performing the install. The procedure checks first for upcc, which is LLNL Berkley

UPC, then for upc which is either GNU-UPC or HP UPC, and then defaults to cc which is

used for the Cray UPC compiler.

UPC-CHECK uses the ROSE Toolkit [40] and the ROSE Toolkit uses BOOST [1]. If BOOST

and/or ROSE are not already installed, the afore-mentioned websites contain download and

installation information. UPC-CHECK is installed by issuing the following:

STEP 1: wget http://hpcgroup.public.iastate.edu/UPC-CHECK/UPC-CHECK.tar.gz

STEP 2: tar -zxf UPC-CHECK.tar.gz

STEP 3: cd UPC-CHECK

STEP 4: ./install UPC-CHECK -p INSTALL DIR -b BOOST DIR -r ROSE DIR

If -p INSTALL DIR is omitted, this is the same as -p /usr/local , similarly for -b and -r.

Once installed, the UPC-CHECK executable can be copied form INSTALL DIR/bin to a

http://hpcgroup.public.iastate.edu/UPC-CHECK/UPC-CHECK.tar.gz

www.manaraa.com

50

system bin directory, like /usr/local/bin if desired.

A.5 Tutorial:

The following examples illustrate how to use UPC-CHECK to find and correct program

errors. Errors issued by UPC-CHECK are independent of which UPC compiler used. (Berke-

ley’s UPC compiler was used for these examples.)

Example 1: Error in the value passed to a UPC function.

cat -n ex1.upc

1 #include <upc.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <upc collective.h>

5

6 #define BLOCK SIZE 3

7

8 shared [BLOCK SIZE] int arrA[THREADS * BLOCK SIZE];

9 shared [BLOCK SIZE] int arrB[THREADS * BLOCK SIZE];

10 static shared int sh val;

11

12 int main() {

13 int num bytes, i ;

14

15 /* The programmer forgot to include the following line */

16 /* sh val=BLOCK SIZE; */

17 upc forall(i=0; i<THREADS*BLOCK SIZE; i++; (i/BLOCK SIZE)) {

18 arrA[i] = (i+MYTHREAD) * (i-MYTHREAD) + 1;

19 }

20 upc forall(i=0; i<THREADS*BLOCK SIZE; i++; (i/BLOCK SIZE)) {

www.manaraa.com

51

21 arrB[i] = (i+MYTHREAD) * (i-MYTHREAD) + 1;

22 }

23

24 upc barrier;

25

26 upc all broadcast(arrA, arrB, sizeof(int)*sh val, UPC IN NOSYNC |

UPC OUT NOSYNC);

27

28 upc barrier;

29

30 if (MYTHREAD == 0) {

31 for(i=0;i<THREADS*BLOCK SIZE; i++) {

32 printf(‘‘Thread %d arrB[%d] / arrA[%d]=%d \n’’,

33 MYTHREAD, i,i,arrB[i]/arrA[i]);

34 }

35 }

36

37 return 0;

38 }

Using UPC-CHECK as follows

> upc-check -T 4 -o ex1 ex1.upc > time upcrun -n 4 ./ex1

produces the following message:

Thread 0 encountered invalid arguments in function upc all broadcast at line 26

in file /home/jjc/ex1.upc.

Error: Parameter (((sizeof(int)) *(sh val))) passes non-positive value of 0 to

nbytes argument

Variable sh val was declared at line 10 in file /home/jjc/ex1.upc.

44.162u 0.024s 0:12.20 362.1% 0+0k 0+0io 0pf+0w

www.manaraa.com

52

UPC-CHECK has detected that in line 26 of ex1.upc on thread 0, the value of the expression be-

ing passed: “sizeof(int)*sh val” is zero. This is not allowed in the argument of upc all broadcast

which has the formal parameter nbytes.

UPC-CHECK also reports that the variable sh var was declared in line 10. Notice that it is

declared as a static shared global variable. Since no initialization of this value has occurred

before it is used in line 26, it would have the default (incorrect) value 0 as reported. When

the statement, sh val=BLOCK SIZE, is inserted at line 16, the program works as intended.

Example 2: Failure to allocate hints passed to upc all fopen when numhints>0, causing file

not to open.

> cat -n ex2.upc

1 #include <upc.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <upc io.h>

5

6 int main() {

7 size t numhints;

8 upc file t *fd;

9 struct upc hint *hints;

10

11 numhints = 1;

12

13 fd = upc all fopen(‘‘upcio1.txt’’,UPC INDIVIDUAL FP|UPC WRONLY|UPC CREATE,

numhints, hints);

14

15 if (fd != NULL)

16 upc all fclose(fd);

17 else

www.manaraa.com

53

18 if(!MYTHREAD) printf(‘‘File not open \n’’);

19

20 return 0;

21 }

Using UPC-CHECK as follows

> upc-check -T 4 -o ex2 ex2.upc

> upcrun -n 4 ./ex2

produces the following message:

Thread 0 encountered invalid arguments in function upc all fopen at line 13

in file /home/jjc/ex2.upc.

Error: Parameter numhints passes non-zero value of 1 to ‘numhints’ argument

while target of parameter (hints) passed to ‘hints’ argument is unallocated.

Variable numhints was declared at line 7 in file /home/jjc/ex2.upc.

Variable hints was declared at line 9 in file /home/jjc/ex2.upc.

In line 13, we see that one hint was to be passed to the I/O routine, but hints was not point-

ing to allocated space. (*hints should have been allocated and initialized.) Therefore, either

numhints must be set to 0 or *hints must be allocated and initialized.

Example 3: Failure to call upc barrier from all threads.

> cat -n ex3.upc 1 #include <upc.h>

2 #include <math.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 /* function that returns an integer zero value is unlikely to be computed

at compile-time */

7 int zero(){

8 return (int) (sin(0.1*MYTHREAD)/2.3);

9 }

www.manaraa.com

54

10

11 extern void funcA();

12

13 int i, sum;

14 shared int arrA[THREADS];

15

16 int main() {

17

18 arrA[MYTHREAD] = MYTHREAD;

19

20 /* called by thread 1 only */

21 if (MYTHREAD == 1) {

22 /* this should never be executed */

23 if (zero()) {

24 funcA();

25 }

26 }

27

28 /* called by all other threads */

29 else {

30 funcA();

31 }

32

33 /* sum up all elements in arrA */

34 sum = 0; for (i = 0; i < THREADS; i++) { sum += arrA[i]; }

35 if ((MYTHREAD==0) || zero()) printf(‘‘thread %i: value = %i\n’’,

MYTHREAD, (int) sum); 36

37 /* end reached - terminate */

www.manaraa.com

55

38 if ((MYTHREAD==0) || zero()) printf(‘‘thread %i: end\n’’, MYTHREAD);

39 return 0;

40 }

> cat -n /home/jjc/ex3 s.upc

1 #include <upc.h>

2 #include <math.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 void funcA() {

7 upc barrier;

8 }

Using UPC-CHECK as follows > upc-check -T 4 -o ex3 ex3.upc ex3 s.upc

> upcrun -n 4 ./ex3

produces the following message:

Runtime error: Deadlock condition detected: One or more threads have finished

executing while other threads are waiting at a collective routine

Status of threads

=================

Thread id:Status:Presently waiting at line number:of file

0:waiting at upc barrier: 7: /home/jjc/ex3 s.upc

1:reached end of execution through: 39: /home/jjc/ex3.upc

2:executing:unknown:unknown

3:executing:unknown:unknown

We see that the call to upc barrier at line 7 in ex3 s.upc is missing for thread 1. Since every

thread that enters funcA() calls upc barrier, thread 1 must not have called funcA(). Looking

at where thread 1 calls funcA() in ex3.upc, we can see that funcA() may or may not be called

www.manaraa.com

56

depending on whether the body of the following if statement is executed.

23 if (zero()) {

24 funcA();

25 }

Clearly it must not be for this run, so one can look either at why the function zero() is return-

ing 0 on thread 1 or whether upc barrier should be called in an else-block for this if.

Example 4: Deadlock due to missing collective routine.

> cat -n ex4.upc

1 #include <upc.h>

2 #include <math.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 /* function that returns an integer zero value which can not be calculated

at compile-time */

7 int zero(){

8 return (int) (sin(0.1*MYTHREAD)/2.3);

9 }

10

11 #include <upc io.h>

12

13 #define BLOCKSIZE 4

14

15 shared [BLOCKSIZE] char tempArray[5 * THREADS];

16

17 extern void syncFiles(upc file t * fd);

18

19 int main()

www.manaraa.com

57

20 {

21 int i;

22 upc file t *fd;

23

24 upc forall(i = 0; i < 20; i++; &tempArray[i])

25 {

26 tempArray[i] = ‘a’+ i;

27 }

28

29 upc barrier;

30

31 fd = upc all fopen(‘‘c J 1 1 n.txt’’,

32 UPC WRONLY|UPC COMMON FP|UPC CREATE,

33 0, NULL);

34

35 upc all fwrite shared(fd, tempArray,

36 BLOCKSIZE, sizeof(char), 20,

37 UPC IN ALLSYNC | UPC OUT NOSYNC);

38

39 /* called by thread 1 only */

40 if (MYTHREAD == 1) {

41 /* this should never be executed */

42 if (zero()) {

43 syncFiles(fd);

44 }

45 }

46

47 /* called by all other threads */

www.manaraa.com

58

48 else {

49 syncFiles(fd);

50 }

51

52 upc all fclose(fd);

53

54 return 0;

55 }

> cat -n ex4 s.upc

1 #include <upc.h>

2 #include <math.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <upc io.h>

6

7 void syncFiles(upc file t * fd)

8 {

9 upc all fsync(fd);

10 }

Using UPC-CHECK as follows

> upc-check -T 4 -o ex4 ex4.upc ex4 s.upc

> time upcrun -n 4 ./ex4

produces the following message:

Runtime error: Deadlock condition detected: Different threads waiting at

different collective routines

Status of threads

=================

Thread id:Status:Presently waiting at line number:of file

www.manaraa.com

59

0:waiting at upc all fsync on file pointer fd: 9: /home/jjc/ex4 s.upc

1:waiting at upc all fclose on file pointer fd: 52: /home/jjc/ex4.upc

2:executing:unknown:unknown

3:executing:unknown:unknown

43.450u 0.020s 0:12.21 356.0% 0+0k 0+0io 0pf+0w

This message reports that the program is deadlocked and that two different threads are wait-

ing at different collective routines. Thread 0 is stopped at a call to upc all fsync at line 9 of

ex4 s.upc. Looking at the file ex4 s.upc, one can see that this line is in the function syncFiles.

syncFiles is called at two different lines in ex4.upc, both of which will always precede the point

of execution where thread 1 is reported to be stopped (line 52 of ex4.upc). Thus, thread 0

called syncFiles but thread 1 did not. Looking at the if structure in lines 40-50 of ex4.upc, we

see:

40 if (MYTHREAD == 1) {

41 /* this should never be executed */

42 if (zero()) {

43 syncFiles(fd);

44 }

45 }

46

47 /* called by all other threads */

48 else {

49 syncFiles(fd);

50 }

so for thread 0, syncFiles is called only if the body of the if block executes.

42 if (zero()) {

43 syncFiles(fd);

44 }

www.manaraa.com

60

Clearly, the program logic must be changed. Perhaps upc all fsync(fd) should be called in an

else-block of this if.

Example 5: Different source arrays are passed to upc all reduce function.

> cat -n ex5.upc

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <upc.h>

4 #include <upc collective.h>

5

6 #define N 4

7 shared [N] int *ptrA;

8 shared int sumA;

9

10 int main() {

11 int i;

12

13 ptrA = upc global alloc(THREADS,N*sizeof(int));

14

15 upc forall(i=0; i<N*THREADS;i++;i/N) {

16 ptrA[i] = i;

17 }

18

19 upc barrier;

20

21 upc all reduceI(&sumA, ptrA, UPC ADD, N*THREADS, N, NULL,

UPC IN NOSYNC|UPC OUT NOSYNC);

22

23 upc barrier;

www.manaraa.com

61

24

25 if (MYTHREAD==0) printf(‘‘sumA=%d\n’’,sumA);

26

27 return 0;

28 }

Using UPC-CHECK as follows

> upc-check -T 4 -o ex5 ex5.upc

> time upcrun -n 4 ./ex5

produces the following message:

Runtime error: Unspecified behavior condition detected, may lead to deadlock :

One or more threads have different values for single valued parameters.

Status of threads

=================

Thread id:Status:Presently waiting at line number:of file

0:waiting at upc all reduceI: 21: /home/jjc/ex5.upc

1:waiting at upc all reduceI: 21: /home/jjc/ex5.upc

2:executing:unknown:unknown

3:waiting at upc all reduceI: 21: /home/jjc/ex5.upc

Mismatch in parameter: src.

Thread no.

===

0:(ptrA) points to memory location 0x2acf62c46ff0.

Variable ptrA was declared at line 7 in file /home/jjc/ex5.upc.

1:(ptrA) points to memory location 0x2acf62c46fc0.

Variable ptrA was declared at line 7 in file /home/jjc/ex5.upc.

2:

3:(ptrA) points to memory location 0x2acf62c46fe0.

www.manaraa.com

62

Variable ptrA was declared at line 7 in file /home/jjc/ex5.upc.

44.402u 0.068s 0:12.28 362.0% 0+0k 0+0io 0pf+0w

This message reports that threads have different values of the src parameter of function

upc all reduceI. ptrA, declared at line 7 of file ex5.upc, points to different memory locations.

Looking at the ptrA declaration, we see that ptrA is a private pointer-to-shared. Later in

the code its assigned the value returned by the call to upc global alloc. This function is not

collective. If its called by multiple threads, all threads which make the call get different alloca-

tions. The author of the code probably meant to call upc all alloc instead. Note that with the

current version of Berkley UPC compiler, the value of sumA will be the same in either case,

but this behavior is not guaranteed for the test above.

www.manaraa.com

63

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincerest gratitude to those who helped

me with various aspects of conducting this research and writing this thesis.

First and foremost, I would like to thank Dr. Glenn R. Luecke for his guidance, patience and

support throughout the expanse of this research and the writing of this thesis. His insights

and words of encouragement have often inspired and reinvigorated me.

I would also like to thank my committee members Dr. Suraj C. Kothari and Dr. Zhao Zhang

for their valuable time, suggestions and contributions towards this body of work.

I would always be indebted to Dr. Marina Kraeva and Dr. James Coyle for their guidance

and inputs throughout the entire duration of the project. Dr. Marina and Dr. James not

only helped in the design of the project, but also provided valuable inputs, alternatives and

modifications throughout the implementation and testing of the project.

I am also thankful to Dr. Jim Hoekstra for providing me with the clusters along with the

required software for the implementation of this project.

I would like to express my gratitude to Dr. Dan Quinlan, and his colleagues working at the

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory for their

ROSE compiler infrastructure. They not only cleared my queries about ROSE in a timely

fashion, but also promptly provided enhancements and bug-fixes required for this project.

www.manaraa.com

64

BIBLIOGRAPHY

[1] BOOST.

[2] High Performance Computing (HPC) Group, Iowa State University.

[3] The High Performance Computing Laboratory, The George Washington University.

[4] Sun Microsystems HPC ClusterTools.

[5] The Berkeley Unified Parallel C.

[6] Unified Parallel C (Wikipedia).

[7] UPC NAS Parallel Benchmarks.

[8] Gabriel Bracha and Sam Toueg. Distributed deadlock detection. Distributed Computing,

2:127–138, 1987. 10.1007/BF01782773.

[9] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock detection.

ACM Trans. Comput. Syst., 1:144–156, May 1983.

[10] Sébastien Chauvin, Proshanta Saha, François Cantonnet, Smita Annareddy, and Tarek

El-Ghazawi. UPC manual. 2005.

[11] Shigang Chen, Yi Deng, P. Attie, and Wei Sun. Optimal deadlock detection in distributed

systems based on locally constructed wait-for graphs. In Distributed Computing Systems,

1996., Proceedings of the 16th International Conference on, pages 613 –619, may 1996.

[12] A.N. Choudhary, W.H. Kohler, J.A. Stankovic, and D. Towsley. A modified priority based

probe algorithm for distributed deadlock detection and resolution. Software Engineering,

IEEE Transactions on, 15(1):10 –17, jan 1989.

www.manaraa.com

65

[13] James Coyle, James Hoekstra, Marina Kraeva, Glenn R. Luecke, Elizabeth Kleiman,

Varun Srinivas, Alok Tripathi, Olga Weiss, Andre Wehe, Ying Xu, and Melissa Yahya.

UPC run-time error detection test suite. 2008.

[14] James Coyle, Indranil Roy, Marina Kraeva, and Glenn R. Luecke. UPC-CHECK: A scal-

able tool for detecting run-time errors in Unified Parallel C. In Proceedings of International

Supercomputing Conference (ICS), June 2012. to appear.

[15] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey Zheltov, and

Stanislav Bratanov. Automated, scalable debugging of MPI programs with Intel R©message

checker. In Proceedings of the second international workshop on Software engineering for

high performance computing system applications, SE-HPCS ’05, pages 78–82, New York,

NY, USA, 2005. ACM.

[16] Ali Ebnenasir. UPC-SPIN: A Framework for the Model Checking of UPC Programs. In

Proceedings of Fifth Conference on Partitioned Global Address Space Programming Models,

PGAS ’11, 2011.

[17] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick. UPC: Dis-

tributed Shared Memory Programming. Wiley-Interscience, 2003.

[18] V.D. Gligor and S.H. Shattuck. On deadlock detection in distributed systems. Software

Engineering, IEEE Transactions on, SE-6(5):435 – 440, sept. 1980.

[19] Iowa State University High Performance Computing Group. User’s Guide for UPC-

CHECK 1.0. 2011.

[20] Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, and Matthias S. Müller. A graph

based approach for MPI deadlock detection. In Proceedings of the 23rd international

conference on Supercomputing, ICS ’09, pages 296–305, New York, NY, USA, 2009. ACM.

[21] Tobias Hilbrich, Martin Schulz, Bronis R. Supinski, and Matthias S. Müller. Must: A

scalable approach to runtime error detection in mpi programs. In Matthias S. Müller,

www.manaraa.com

66

Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel, editors, Tools for High Per-

formance Computing 2009, pages 53–66. Springer Berlin Heidelberg, 2010. 10.1007/978-

3-642-11261-4 5.

[22] S. T. Huang. A distributed deadlock detection algorithm for csp-like communication.

ACM Trans. Program. Lang. Syst., 12:102–122, January 1990.

[23] Joo Kyun Kim and Kern Koh. A 0(1) time deadlock detection scheme in a single unit and

single request multiprocessor system. In TENCON ’91.1991 IEEE Region 10 International

Conference on EC3-Energy, Computer, Communication and Control Systems, volume 2,

pages 219 –223, aug 1991.

[24] Edgar Knapp. Deadlock detection in distributed databases. ACM Comput. Surv., 19:303–

328, December 1987.

[25] Kraeva, Marina and Coyle, James and Luecke, Glenn R. and Roy, Indranil and Kleiman,

Elizabeth and Hoekstra, Jim. UPC-CompilerCheck: A Tool for Evaluating Error Detec-

tion Capabilities of UPC Compilers. preprint (2012).

[26] Bettina Krammer, Matthias Müller, and Michael Resch. MPI application development

using the analysis tool marmot. In Marian Bubak, Geert van Albada, Peter Sloot, and

Jack Dongarra, editors, Computational Science - ICCS 2004, volume 3038 of Lecture Notes

in Computer Science, pages 464–471. Springer Berlin / Heidelberg, 2004. 10.1007/978-3-

540-24688-6 61.

[27] A.D. Kshemkalyani and M. Singhal. Efficient detection and resolution of generalized

distributed deadlocks. Software Engineering, IEEE Transactions on, 20(1):43 –54, jan

1994.

[28] Soojung Lee. Fast, centralized detection and resolution of distributed deadlocks in the

generalized model. Software Engineering, IEEE Transactions on, 30(9):561 – 573, sept.

2004.

www.manaraa.com

67

[29] Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, and Indranil Roy. UPC-

CHECK Tutorial. 2011.

[30] Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, Ying Xu, Elizabeth

Kleiman, and Olga Weiss. Evaluating error detection capabilities of UPC run-time sys-

tems. In Proceedings of the Third Conference on Partitioned Global Address Space Pro-

graming Models, PGAS ’09, pages 7:1–7:4, New York, NY, USA, 2009. ACM.

[31] Glenn R. Luecke, James Coyle, James Hoekstra, Marina Kraeva, Ying Xu, Mi-Young

Park, Elizabeth Kleiman, Olga Weiss, Andre Wehe, and Melissa Yahya. The importance

of run-time error detection. In Matthias S. Muller, Michael M. Resch, Alexander Schulz,

and Wolfgang E. Nagel, editors, Tools for High Performance Computing 2009, pages 145–

155. Springer Berlin Heidelberg, 2010. 10.1007/978-3-642-11261-4 10.

[32] Glenn R. Luecke, Yan Zou, James Coyle, Jim Hoekstra, and Marina Kraeva. Deadlock

detection in MPI programs. Concurrency and Computation: Practice and Experience,

14(11):911–932, 2002.

[33] Jayadev Misra and K. M. Chandy. A distributed graph algorithm: Knot detection. ACM

Trans. Program. Lang. Syst., 4:678–686, October 1982.

[34] Don P. Mitchell and Michael J. Merritt. A distributed algorithm for deadlock detection

and resolution. In Proceedings of the third annual ACM symposium on Principles of

distributed computing, PODC ’84, pages 282–284, New York, NY, USA, 1984. ACM.

[35] J. Eliot B. Moss. Nested transactions: An approach to reliable distributed computing,

1981.

[36] N Natarajan. A distributed scheme for detecting communication deadlocks. IEEE Trans.

Softw. Eng., 12:531–537, April 1986.

[37] Ron Obermarck. Distributed deadlock detection algorithm. ACM Trans. Database Syst.,

7:187–208, June 1982.

www.manaraa.com

68

[38] Paul Petersen and Sanjiv Shah. OpenMP support in the Intel R©Thread Checker. In

Michael Voss, editor, OpenMP Shared Memory Parallel Programming, volume 2716 of

Lecture Notes in Computer Science, pages 1–12. Springer Berlin / Heidelberg, 2003.

10.1007/3-540-45009-2 1.

[39] Peter Pirkelbauer, Chunhua Liao, Thomas Panas, and Daniel Quinlan. Runtime detection

of c-style errors in upc code. In Proceedings of Fifth Conference on Partitioned Global

Address Space Programming Models, PGAS ’11, 2011.

[40] Daniel J. Quinlan and et al. ROSE compiler project.

[41] M. Roesler and W.A. Burkhard. Resolution of deadlocks in object-oriented distributed

systems. Computers, IEEE Transactions on, 38(8):1212 –1224, aug 1989.

[42] Indranil Roy. UPC-CHECK: A scalable tool for detecting run-time errors in Unified

Parallel C. Master’s thesis, Iowa State University, Ames, Iowa, USA, 2012. Preprint.

[43] Indranil Roy, Glenn R. Luecke, James Coyle, Marina Kraeva, and James Hoekstra. An

optimal deadlock detection algorithm for Unified Parallel C. preprint (2012).

[44] P.H. Shiu, Yudong Tan, and III Mooney, V.J. A novel parallel deadlock detection algo-

rithm and architecture. In Hardware/Software Codesign, 2001. CODES 2001. Proceedings

of the Ninth International Symposium on, pages 73 –78, 2001.

[45] Stephen Siegel. Verifying parallel programs with mpi-spin. In Franck Cappello, Thomas

Herault, and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and

Message Passing Interface, volume 4757 of Lecture Notes in Computer Science, pages

13–14. Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-75416-9 8.

[46] M.K. Sinha and N. Natarajan. A priority based distributed deadlock detection algorithm.

Software Engineering, IEEE Transactions on, SE-11(1):67 – 80, jan. 1985.

[47] The UPC Consortium. UPC Language Specifications (v1.2). 2005.

www.manaraa.com

69

[48] Sarvani Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. Dynamic verification

of mpi programs with reductions in presence of split operations and relaxed orderings.

In Proceedings of the 20th international conference on Computer Aided Verification, CAV

’08, pages 66–79, Berlin, Heidelberg, 2008. Springer-Verlag.

[49] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and Robert M. Kirby.

Isp: a tool for model checking mpi programs. In Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming, PPoPP ’08, pages 285–

286, New York, NY, USA, 2008. ACM.

[50] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of MPI applica-

tions with umpire. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing

(CDROM), Supercomputing ’00, Washington, DC, USA, 2000. IEEE Computer Society.

[51] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B.R. de Supinski, M. Schulz, and

G. Bronevetsky. A scalable and distributed dynamic formal verifier for mpi programs.

In High Performance Computing, Networking, Storage and Analysis (SC), 2010 Interna-

tional Conference for, pages 1 –10, nov. 2010.

[52] Xiang Xiao and J.J. Lee. A novel parallel deadlock detection algorithm and hardware for

multiprocessor system-on-a-chip. Computer Architecture Letters, 6(2):41 –44, feb. 2007.

[53] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao

Yang, Fan Long, Lintao Zhang, and Lidong Zhou. Modist: transparent model checking

of unmodified distributed systems. In Proceedings of the 6th USENIX symposium on

Networked systems design and implementation, NSDI’09, pages 213–228, Berkeley, CA,

USA, 2009. USENIX Association.

[54] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta, Jason

Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands, Costin Iancu,

Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and Tong Wen. Productivity

and performance using partitioned global address space languages. In Proceedings of the

www.manaraa.com

70

2007 international workshop on Parallel symbolic computation, PASCO ’07, pages 24–32,

New York, NY, USA, 2007. ACM.

	2012
	UPC-CHECK: A scalable tool for detecting run-time errors in Unified Parallel C
	Indranil Roy
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. GENERAL INTRODUCTION
	1.1 Introduction
	1.2 Thesis Organization

	2. UPC-CHECK: A SCALABLE TOOL FOR DETECTING RUN-TIME ERRORS IN UNIFIED PARALLEL C
	2.1 Abstract
	2.2 Introduction
	2.3 Overview of UPC-CHECK
	2.3.1 Instrumentation
	2.3.2 Errors detected by UPC-CHECK

	2.4 Testing
	2.4.1 Function testing
	2.4.2 Scalability and overhead testing

	2.5 Compiler-independence testing
	2.6 Fixing errors using UPC-CHECK: An example
	2.7 Summary

	3. A DISTRIBUTED, SCALABLE AND OPTIMAL DEADLOCK DETECTION ALGORITHM FOR UNIFIED PARALLEL C
	3.1 Abstract
	3.2 Introduction
	3.3 Background
	3.4 Methodology
	3.4.1 Detecting deadlocks due to collective errors in collective operations
	3.4.2 Detecting deadlocks and livelocks created by hold-and-wait dependency chains for acquiring locks
	3.4.3 The complete algorithm

	3.5 Experimental verification of scalability
	3.6 Conclusion

	4. GENERAL CONCLUSIONS
	A. USER'S GUIDE FOR UPC-CHECK 1.0
	A.1 Background
	A.2 How to use UPC-CHECK
	A.3 Environmental Variables:
	A.4 Installation Guide for UPC-CHECK 1.0
	A.5 Tutorial:

	ACKNOWLEDGEMENTS
	BIBLIOGRAPHY

